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ABSTRACT Clinical translation of reported biomarkers requires reliable and consistent algorithms to
derive biomarkers. However, the literature reports statistically significant differences between 1-D MRS
measurements from control groups and subjects with disease states but frequently provides little information
on the algorithms and parameters used to process the data. The sensitivity of in vivo brain magnetic
resonance spectroscopy biomarkers is investigated with respect to parameter values for two key stages of
post-acquisitional processing. Our effort is specifically motivated by the lack of consensus on approaches
and parameter values for the two critical operations, water resonance removal, and baseline correction. The
different stages of data processing also introduce varying levels of uncertainty and arbitrary selection of
parameter values can significantly underutilize the intrinsic differences between two classes of signals. The
sensitivity of biomarkers points to the need for a better understanding of how all stages of post-acquisitional
processing affect biomarker discovery and ultimately, clinical translation. Our results also highlight the
possibility of optimizing biomarker discovery by the careful selection of parameters that best reveal class
differences. Using previously reported data and biomarkers, our results demonstrate that small changes in
parameter values affect the statistical significance and corresponding effect size of biomarkers. Consequently,
it is possible to increase the strength of biomarkers by selecting optimal parameter values in different spectral
intervals. Our analyses with a previously reported data set demonstrate an increase in effect sizes for wavelet-
based biomarkers of up to 36%, with increases in classification performance of up to 12%.

INDEX TERMS Magnetic resonance spectroscopy, biomarkers, sensitivity, neuroimaging, statistical
significance.

I. INTRODUCTION
Successful use of biomarkers to accurately monitor changes
in health requires differences to be consistently measured in
clinical settings. To be reliably used, however, the end-to-end
system of measurement and the subsequent post-processing
should be accurately characterized to assure that prospec-
tive biomarkers are robust to variability introduced at every
stage. An accurate accounting of system-wide variance can

maximize the use of intrinsic physiological differences, high-
light specific sources of variance, and predict the performance
of biomarkers in clinical environments. Here we report our
effort to characterize the sensitivity of biomarkers reported
previously in [1] from in vivo magnetic resonance spec-
troscopy (MRS), by measuring their change when key post-
acquisitional processing parameters are varied. Our work
provides a foundation for comprehensive statistical modeling
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that can forecast and predict overall system performance as
well as identify the sensitivities of prospective biomarkers
through targeted trade studies. Efforts in other disciplines
have capitalized on defining parameterized, end-to-end mod-
els [2], [3] and have become critical components for
advancing technologies from demonstrations to implemented
systems.

A. CLINICAL TRANSLATION OF MRS
Magnetic resonance imaging has been widely used for clini-
cal diagnosis by providing a non-invasive and non-ionizing
method of visualizing body tissue structure and the alter-
ations brought about by disease. More recently, advanced
MR techniques have provided additional functional informa-
tion, particularly in the brain, yielding measures of diffusion,
blood flow, and metabolism. Specifically, MRS has been
demonstrated to provide a non-invasive means of measur-
ing brain biochemistry and by doing so provides a ‘‘virtual
biopsy’’ to monitor a range of neurological diseases such as
brain cancer, Alzheimer’s disease, brain injury, and chronic
pain [4]. Most importantly, the biochemical changes observed
by MRS often precede morphological and other functional
changes, thus providing earlier diagnosis and more effective
therapeutic monitoring [5]. In clinical practice, changes in the
spectral pattern or semi-quantitative approaches are used [6].
While the current approach is effective for diseases with gross
metabolic changes, such as brain tumors [7], it is less effective
for more subtle metabolic changes that occur in diseases
such as schizophrenia [8], autism [9], and concussion [10].
In these neurological disorders, improvements in sensitivity
would have a significant impact on the diagnostic use of
MRS. Therefore, there is an important need to comprehen-
sively understand how the tools for measurement and analysis
can expose and manage these small differences for clinical
implementation.

In this study, we have focused on a specific neurological
condition: chronic pain in spinal cord injury (SCI). Recent
studies have shown that SCI patients suffer from a high
incidence of chronic pain after their injury [11]. Numerous
studies have shown neurochemical alterations in chronic pain
usingMRS, such as increases in glutamate (Glu) and gamma-
amino butyric acid (GABA) [12]. One of the primary objec-
tives in understanding the central mechanism of SCI-related
pain is the delineation of the differences in neurochemistry
between those individuals with and without spinal cord injury
to identify biomarkers to better understand the underlying
pathophysiological changes that occur in this disorder.

B. POST-ACQUISITIONAL PROCESSING APPROACHES
Post-acquisitional processing of MRS signals consists of the
algorithms applied to individual MRS signals, whereby dif-
ferent distortions are successively removed from signals and
biomarkers are identified to enable a numerical inference
on one signal or between two or more cohorts. Jiru [13]
published a review of a subset of algorithms that comprise
post-acquisitional processing for MRS signals, describing

the origin of the distortion to be mitigated as well as some
of the technical approaches used for corrections. The wide
range of effects of post-acquisitional processing for biological
material was described in [14].
The key analytical post-acquisitional processing platforms

for MRS have focused on operations enabling the estimate of
absolute and relative chemical concentrations from individual
signals, where the two main approaches are time-domain
and frequency-domain methods. Time domain methods have
the advantage of easily managing missing data points [15]
as well as affording greater flexibility to the model func-
tion adopted in contrast to frequency domain methods [16].
Frequency domain methods have the advantage of being nat-
urally suited to frequency selective analysis which can reduce
the number of model parameters, hence reducing computa-
tional demands.
A popular technique for time-domain analysis is

MRUI-AMARES [17], [18] (Magnetic Resonance User Inter-
face using Advanced Method for Accurate, Robust and Effi-
cient Spectral fitting), an interactive, time-domain method
which fits a parameterized model function to the data by min-
imizing a cost function [19]. AMARES is typically preceded
by algorithms to mitigate distortions. Another time-domain
approach in MRUI, frequently used, is HSVD [20] which
performs a subspace-based inversion of individualMRS spec-
tra to recover the least-squares-based estimates of resonance
parameters, presumably also following the application of
algorithms to remove different distortions. The most popular
frequency-domain technique is LCModel (Linear Combina-
tion Model) [21] which uses a linear combination of model
spectral basis sets composed of individual metabolites to fit in
vivo data in the frequency domain. In contrast to AMARES,
LCModel does not utilize algorithms before its application to
eliminate distortions, choosing instead to estimate key values
during optimization. Many of these inference techniques are
accompanied by Cramer-Rao bounds to provide an overall
measure of the precision of the algorithm, but they do not
fold in broader dependencies, such as preceding algorithms
or model-order selection.
While there are inherent differences in the mathematical

approaches used by these parameter estimation algorithms,
there are also major user-oriented issues as well. It is likely
that these practical issues have driven the popularity of
LCModel, which requires the selection of an appropriate basis
set (dependent on the data acquisition parameters such as
field strength, echo time, localization sequence) and optional
loading of the FID with a water reference. Although there is
the possibility for additional user interaction, little more is
required for obtaining relativemetabolite concentrations from
in vivo MRS data. The drawback to such a method is that
less is known about what specific post-processing routines
were employed to obtain those measurements. In contrast,
MRUI-AMARES is interactive, allowing the user full control
over all the post-processing routines. The drawback to this
level of detail is that it requires user input at each step,
which results in user-dependencies that can lead to greater
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variability ofmeasurements [22], [23].Moreover, there can be
a number of issues regarding the sensitivity of the results from
these approaches due to a variety of user-determined param-
eters, such as the number of resonance modes in the models,
the number of spectra in basis sets, prior knowledge, etc.

C. PREVIOUS EFFORTS
We build upon earlier attempts to gauge the sensitivity of
MRS measurements to different factors. The effect of dif-
ferent amounts of prior knowledge and windowing was pre-
viously explored by [24] to determine how different factors
affect the precision of quantitation for 15 metabolites when
recorded from repeated scans collected successively from
a single subject. The quantitation was undertaken using a
non-linear fitting algorithm and demonstrated that changes in
processing techniques at different stages, as well as different
amounts of prior knowledge, yielded different mean values
and standard deviations for estimates ofmetabolite concentra-
tions. For many chemical biomarkers and processing stages,
the differences were statistically significant. Further, the inac-
curate modeling of resonances outside the spectral regions of
interest could negatively impact estimates of concentration
within the region of interest. Similarly, the application of
rectangular and exponential windows of different lengths to
the time series demonstrated significant changes to estimates
of metabolite levels. Subsequent efforts [25] demonstrated
an increase in precision when field-specific prior knowledge
was utilized, but significant differences were observed dur-
ing different acquisition conditions, and optimal parameter
values for windowing and model function selection remained
unspecified.

Kreis addressed issues of spectral quality in proton
MR spectroscopy by examining the relative utility of different
definitions of signal quality, namely SNR, in time-domain
as well as frequency domain, as part of a broader attempt
to characterize a variety of artifacts in different stages of
MRS acquisition and processing [26]. More importantly, an
initial attempt was made to categorize and concatenate the
different sources of error that are encountered during absolute
chemical quantitation, ranging from hardware, acquisition,
and processing and analysis. Somorjai [27] demonstrated
the sensitivity of classification accuracy to post-acquisitional
processing, and in particular to strategies for normalization
of spectra. He further demonstrated the importance of con-
sidering how MRS spectra are processed after acquisition,
albeit with ex vivo brain tissue samples [28], with a conclusion
that the mathematical normalization of MRS spectra greatly
affects classification performance.

Assessments of quantitation precision based on base-
line removal were investigated by Elster and colleagues
[29] where they used semi-parametric models as a mecha-
nism to address uncertainty in making quantitative measure-
ments with MRS. They also addressed efforts to improve
Cramer-Rao bounds when usingmetabolite basis sets to avoid
overly optimistic estimates of precision [30]. Sorensen [31]
evaluatedMRS in comparison to other imagingmodalities for

its comparative effectiveness as a cancer imaging biomarker
both for diagnosis as well as for evaluating response-to-
therapy. The conclusion was that the lack of standardization,
and the resulting lack of reproducibility, has limited its accep-
tance, and that significant effort is required to determine the
precise technique to be used as well as how it should be
utilized in a clinical setting.
Our goal is to numerically assess the sensitivity of MRS

biomarkers to processing algorithms and parameters and
thereby add rigor to biomarker discovery and validation.
To achieve this goal we employ a unique and novel algo-
rithmic platform by which analyses of spectra can be under-
taken to identify differences between two or more groups and
thus gauge the sensitivity of these differences. Algorithms
at each stage of processing are parameterized and enable
performance comparisons over ranges of values. The platform
can also extract both pattern recognition-based and model-
based features that provide complementary approaches to
interpreting MRS data.
We reported preliminary results of biomarker sensitivity

to different parameter values for water resonance removal
in [32]. This paper significantly expands on that effort by
also considering baseline removal algorithms, as well as
their interaction. We also quantify the impact of optimizing
post-processing algorithm parameter values on classification
rates.

II. METHODS AND PROCEDURES
A. PARTICIPANTS AND RECRUITMENT
Herewe use the same data set previously reported [1] to inves-
tigate a completely separate, but equally important, topic:
how the sensitivity of different stages of post-acquisitional
processing affects biomarker discovery and clinical transla-
tion. The participants in [1] consisted of two groups, a SCI
group (n = 10) with a mean age of 36.4 years (SD = 10.4
years) and an able-bodied control group (n = 10), that were
age (±5 years) and gender matched with a mean age of
27.4 years (SD = 6.8 years) (p>0.05). The SCI participants
had injuries sustained more than 12 months prior to testing
(mean = 5.1 years, SD = 4.3 years) and they were all diag-
nosed as having complete thoracic lesions using the Amer-
ican Spinal Injury Association (ASIA) impairment scale as
assessed at specialist spinal injury units. For SCI with pain
the mean duration of condition was 63.6 months since injury
(SD = 49.6), and for SCI without pain the mean dura-
tion of condition 58.2 months since injury (SD = 59.7)
(p > 0.05). Exclusion criteria for the SCI-group included
incomplete SCI and/or tetraplegia, history of psychopathol-
ogy, previous pain syndromes prior to their injury, epilepsy,
or the presence of non MR-compatible devices. Other infor-
mation, such as history of traumatic brain injury (TBI), cur-
rent metallic implants and medications were also recorded
to standardize result reporting. The study had Institutional
Review Board approval and had the equivalence of HIPPA
compliance.
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FIGURE 1. Processing pipeline architecture describing steps of post-acquisitional processing for individual
spectra as well as different types of feature extraction approaches. Cohorts of MRS measurements are
subsequently analyzed with significance testing and feature selection to identify the best combination of
features to be submitted to classification and cross-validation algorithms.

B. MAGNETIC RESONANCE
MR spectra were acquired on a 3 Tesla Siemens Trio scanner
(Siemens AG, Erlangen, Germany), equipped with a stan-
dard quadrature head coil. Localizer images were initially
acquired in three orthogonal planes (transverse, sagittal, and
coronal) and were used for placing the collection voxel within
the discrete anatomic locations of the left thalamus (THA).
MR spectra were acquired using the stimulated echo acqui-
sition mode method with single volume selection (TR/TE
3000/20ms; 2048 FID points, bandwidth 2 kHz; 6 cm3 voxel).
Before each acquisition, localized shimming was performed
to optimize final spectral resolution. Adjustments of zero-
and first-order shim gradients using the automatic B0-field
mapping technique supplied by the vendor (Siemens AG,
Erlangen, Germany) were performed, followed by manual
adjustment of zero-order shim gradients to achieve a resulting
peak width of water at half-maximum that was 16 Hz or better
for all voxels. The WET-technique was used to selectively
suppress the water component of each FID signal [33].

C. THEORY
In vivo MR spectroscopy signals of the brain are a super-
position of the resonances from several brain metabolites,
in addition to a variety of distortions and artifacts intro-
duced during acquisition and from certain macromolecules.

The classical model for MRS signals is:

x (n) =
∑Q

q=1
ρqλ

t
q + ε (tn) ,

λtq = e(αq+iωq)tn (1)

where n = 0, . . . ,N − 1 samples, Q is the total number of
sinusoidal components, (ρq, αq, ωq) are the complex ampli-
tude (includes phase), damping, and frequency of the qth
component, ε(tn) is the noise contribution, and tn = n1t ,
where 1t is the sampling rate [20]. This linear model with
Lorentzian line-shapes and Gaussian noise has been the basis
for most model-based processing of MRS signals [34].

D. ALGORITHMS
We utilize a comprehensive suite of MRS biomarker dis-
covery and statistical classification algorithms previously
employed in [1]. The overall processing pipeline archi-
tecture is shown in Fig. 1, consisting of consecutive
stages of fully parameterized post-processing algorithms
that serially mitigate distortions in MRS signals, followed
by feature extraction, significance testing, feature selec-
tion, and classification algorithms. We examine two of
the post-acquisitional processing steps, baseline removal
and water resonance removal, to determine how sensitive
prospective biomarkers are to changes in their respective
parameter values. These steps were selected because both
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procedures utilized parameterized algorithms for mitigating
distinct distortions. Additionally, the literature reflects little
consensus on optimal ways of implementing or using these
algorithms. The specific algorithms in each of these steps
were the ones used in [1], but the samemethods for evaluating
sensitivity can be adapted for any other algorithms.

One of the main challenges facing the clinical translation
of MRS is extracting features that are directly attributable to
specific pathologies while also providing specificity between
different disease states. As depicted in Fig. 1, we consider two
complementary types of features. Model-based features are
derived mathematically from differential equations describ-
ing magnetic resonance and are the estimated parameter
values for specific chemical resonances (e.g., N-acetyl aspar-
tate, creatine, choline, etc.) that comprise brain MRS spectra.
Deviations in specific chemical concentrations have been
associated with different types of brain injuries [35] and
neurodegeneration [36].

Model-based features, however, can be limited in their
ability to capture changes in all parts of the MRS spec-
trum, particularly in locations where chemical resonances
are unassigned [37]. An alternative is a machine learning-
based approach that objectively evaluates consecutive, adja-
cent intervals in an entire MRS spectrum, independent of
their proximity to major chemical resonances. Though the
feature values do not directly correspond to specific chemical
levels and are less attributable to neurophysiological changes,
previous efforts have reported that combinations of features
can be diagnostic [38].

Since the publication of the results in [1], the processing
pipeline has been augmented to obtain greater accuracy
in removing distortions and more flexibility in deriving
features that can discriminate the two classes. As a con-
sequence of these upgrades, the biomarkers and resulting
effect sizes we examine here are not identical to those
reported in [1], although in many spectral intervals they
are very similar. Nevertheless, our investigation utilizes
the same core algorithms and the identical parameters
used in [1].

1) Water Resonance Removal
Raw proton MR spectra of the brain contain a dominant
water resonance structure whose intensity is multiple orders
of magnitude larger than the brain metabolites that we are
interested in analyzing. While most of the water signal is
suppressed at time of acquisition using narrow band radiofre-
quency chemical-shift selective (CHESS) pulses followed
by spoiling gradients, the actual degree of water suppres-
sion depends on in vivo shim and other factors. Hence,
there is still a remaining water signal thus facilitating the
need for a water removal algorithm. The processing pipeline
implements a model-based water removal algorithm that esti-
mates and removes the modes that comprise the resonance
structure of water. The implementation described by [20]
exploits the state-space formalism for harmonic retrieval dis-
cussed in [39]. For each individual FID, xi, we form the

Hankel data matrix,

Xi =


xi(0) xi(1)· · · xi(M− 1)
xi(1) xi(2)· · · xi(M)
...

. . .
...

xi(L− 2) xi(L− 1)· · · xi(N− 2)
xi(L− 1) xi(L)· · · xi(N− 1)

 (2)

where the total number of data points N = L +M ; we have
chosen L = M = N/2 = 1024 for our implementation. Next,
we compute the singular value decomposition (SVD) of each
Hankel matrix,

Xi=UXiSXiV
H
Xi

(3)

where UXi is a L× L matrix of orthonormal output basis col-
umn vectors, SXi is a L×M diagonal matrix of the singular
values of Xi, and VXi is a M×Mmatrix of orthonormal input
basis column vectors. Resonance parameters are estimated
by optimizing the projection of model functions against the
K-dimensional subspaces using the K leading columns of
UXi [40]. Subsequently, a subset of water-based modes
is identified as those resonances whose frequencies reside
within a pre-determined spectral interval at±Q Hz surround-
ing the known resonance location of water.

2) Baseline Removal
RawMR spectra exhibit a rolling baseline trend due to acqui-
sition noise, as well as contributions from broadband reso-
nance structures of lipids, macromolecules, and metabolites
with low concentrations when using short echo time (TE)
MRS. While long echo (TE > 50 ms) MRS does not suffer
from this problem, it is also much more limited in the number
of metabolites of interest. Short-echo MRS allows for the
detection of important brain metabolites such as glutamate,
myo-inositol, and glutathione, that have short T2 relaxation
that are no longer present at long echo. Therefore, the need for
baseline correction or removal is important. The processing
pipeline implements a time-varying baseline removal filter
that has been successfully used to eliminate baselines [41]
and works by estimating the baseline value at each point,
b(n), n = 1, . . . ,N based on local estimates from the sur-
rounding neighborhood:

b̂i (n) = cdf
(
x̂i (k) : n−

W
2
≤ k ≤ n+

W
2
|W, α

)
,

n = 1, . . . ,N (4)

r̂i (n) = x̂i (n)−b̂i (n) , n = 1, . . . ,N (5)

where b̂i(n) estimates the value of the cumulative distribution
function (cdf) of a processed signal, x̂i(n), in a windowed
region of width, W , around n at the value of α, 0 ≤ α ≤ 1.
Larger values of W derive estimates from wider neighbor-
hoods, while larger values of α presume signals with effec-
tively larger amounts of noise.

From a clinical perspective, water removal and baseline
removal are important as they can significantly alter the
appearance of the spectrum as well as subsequent estimates
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of chemical concentrations. In an ideal spectrum, the base-
line should be flat with resonances resolved to the baseline
and having no overlap with adjacent resonances, such that
measurement of the peak area within a certain frequency
would be selectively reflective of specific metabolites and is
well-resolved to allow for integration of peak areas without
spectral overlap. However, noise, macromolecules and lipids
with short T2 relaxation times can induce broad resonances
that affect the baseline, especially with short-echo time acqui-
sitions as used in the data analyzed in this study. Establishing
the appropriate baseline parameters can be challenging as the
broad underlying lipid and macromolecular resonances may
themselves be diagnostic and therefore aggressive removal
of the baseline could potentially remove additional diagnos-
tic biomarkers [42]. Similarly, water removal methods are
employed to analyze the metabolites that are close to the
water resonance at 4.7 ppm such as myo-inositol and the
secondary resonances of glutamate, glutamine, and creatine.
If water is removed too aggressively, the concentrations of
those metabolites can be underestimated and vice versa.

3) Wavelet-Based Features
The wavelet-based feature extraction stage in Fig. 1 that was
utilized in [1] is a wavelet decomposition technique based
upon the well-known scaling and dilation equations that give
rise to a basis:

φ (t) = 2
∑

c(k)φ(2t − k) (6)

ψ (t) = 2
∑

d(k)φ(2t − k) (7)

ψa,b (t) =
1
√
a
ψ

(
t − b
a

)
(8)

Here, {c, d} are scaling and wavelet coefficient filter banks
that operate upon a scaling function, φ(t), and corresponding
wavelet function, ψ(t). We utilized a Haar mother wavelet
at a depth of 1. As shown in Fig. 2, when used to trans-
form a function, the Haar scaling functions can isolate local
spectral amplitudes, while the wavelet functions can char-
acterize local fluctuations. The original wavelet transform
method described in [1] was subsequently augmented as a
stationary wavelet transform [43], introducing significantly
more features by retaining all integer translations of basis
functions at every scale. Although the resulting transform
is no longer orthonormal, the overcomplete decomposition
permits localized differences to be more precisely isolated.

FIGURE 2. (a) Haar scaling function; (b) Haar wavelet function.

4) Model-Based Features
In contrast to the wavelet-based features, model-based fea-
ture extraction based on HSVD [20], [39] were implemented
to directly estimate the four parameters for each chemical
resonance that comprises MRS spectra: resonance ampli-
tudes, frequencies, decays, and phases. Spectral estimation
algorithms capitalize upon idealized models of the linear
superposition of different chemical resonances. When esti-
mated resonances are matched across multiple spectra the
mode parameters become features that can be tested to
find differences between groups that indicate altered brain
biochemistry.
Similar to the water removal algorithm, the model-based

HSVD technique estimates a specified number of resonance
structures across the entire spectral range by computing the
singular value decomposition of the Hankel data matrix,
X = USVH , of each individual FID and retaining the five
leading columns of the left singular vector matrix,U5 and the
right singular matrix, VH

S . The estimated model-based har-
monic parameters for each of the five modes are obtained by
performing a least-squares projection that maximizes the rep-
resentation of the subspaces inU5 and VH

5 by a Vandermonde
matrix representing the sampling of a harmonic process given
by Equation 1. Estimated resonance structures that are located
within a tolerance (±0.1 ppm) to major metabolite peaks are
matched accordingly. Spectral estimation approaches can be
sensitive to noise, however, and are not guaranteed to identify
the same modes in different signals.

5) Significance Testing
Candidate biomarkers are evaluated using a two-sided, equal
variance (unpooled) student’s t-test to compare the statistical
significance of features (p ≤ 0.05) and to estimate corre-
sponding effect sizes. To ensure that significant wavelet-
based features in [1] were not attributable to random noise
effects, significant wavelet-based features were also required
to exceed 5% of the NAA peak amplitude. For this analysis,
no methods to correct for multiple comparisons were utilized,
e.g., Bonferroni correction.

E. PERTURBATION OF ALGORITHM PARAMETERS
The results reported in [1] provide a set of default algorithm
parameters and default biomarkers that can be used as a
reference point to determine the sensitivity of the reported
biomarkers in terms of their statistical significance and their
effect size as a function of parameters for water removal and
baseline removal. Table 1 summarizes the default parameter
values that were utilized for water removal and baseline
removal in [1] and the range of values that were considered for
each parameter; the parameters in Table 1 correspond to those
that appear above in the methods section. For each processing
stage, the associated pair of parameters was varied and the
statistical significance of resulting biomarkers was evaluated.
A two-dimensional heatmap illustrates the resulting surface
of statistical values generated by sweeping the parameters
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FIGURE 3. Wavelet-based and model based biomarkers obtained for Region 1, 2, and 3 respectively, using the default processing
parameter values. Regions 1 and 2 correspond to NAA and creatine resonances, respectively; Region 3 does not contain an apparent
chemical resonance.

TABLE 1. The default processing parameter value ranges and increments used to generate heatmap response surfaces of the water removal and baseline
removal stages.

over a range of values detailed in Table 1. The heatmaps
are annotated to indicate the location of default parameter
values (i.e., those used in [1]) and the values that achieved the
maximum and minimum significance levels and effect sizes.

In addition to analyzing individual processing stages in
isolation, we investigated the composite sensitivity of both
stages by varying the processing parameters of the baseline
removal and water removal stages concurrently. We evaluated
16,896 (11 × 12 × 16 × 8) total trials that span all possible
parameter values across the combined four parameters of
these two stages, shown in Table 1, using a networked cluster
of 32 CPU cores to achieve a feasible execution time. For
the best and worst-performing trials, the parameter values,
corresponding effect sizes, and percentage change in signif-
icance as compared to the biomarker performance at default
parameter values are also reported.

III. RESULTS
A. DEFAULT PARAMETERS AND BIOMARKERS
Fig. 3 illustrates three distinct spectral intervals in which
wavelet-based biomarkers had statistically significant differ-
ences (p ≤ 0.05) that discriminated healthy subjects from
those having spinal cord injury. Each significant feature

TABLE 2. Wavelet biomarker statistics obtained using the default
processing parameters. * indicates p ≤ 0.05, ** indicates p ≤ 0.01.

occurred within a contiguous cluster of several adjacent,
statistically significant wavelet-based features, revealing an
extended interval of structural difference. In order to maxi-
mize the discrimination between classes, the specific features
chosen in Fig. 3 had the highest effect size in the cluster.
Table 2 shows the respective locations, p-values, and effect
sizes of these biomarkers from the three chosen regions.
Region 1 & Region 2 span spectral intervals in which promi-
nent resonances, N-acetyl aspartate (NAA) and creatine (Cr)
respectively, are clearly present. Region 3 spans a spectral
interval in which the mean intensity spectrum for each class
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FIGURE 4. Heatmap visualizations of wavelet-based biomarker statistics across baseline removal sensitivity trials for Regions 1, 2, and 3, corresponding to
2.02, 3.02, and 3.78 ppm respectively. The default parameter value trials are denoted with a diamond; the best and worst performing trials are denoted by an
asterisk and circle respectively. (a) P-Value heatmap visualizations for wavelet biomarkers in Regions 1, 2, and 3. (b) Effect size heatmap visualizations for
wavelet biomarkers in Regions 1, 2, and 3.

exhibits a clear distinction between the two classes but for
which there is no discernible resonance to which the differ-
ence can be attributed.

In addition to wavelet-based biomarkers, the ensem-
ble mean of estimated model-based resonance structures
obtained using the HSVD algorithm are also shown in
Fig. 3, for Regions 1 (NAA) and 2 (Cr) respectively.
No apparent resonance structure is observable in Region 3,
and therefore it is omitted from our analysis of model-based
biomarkers. The spectral locations and statistics of the model-
based biomarkers derived from the resonance structures are
listed in Table 3. From the set of model-based biomarkers
obtained using the default processing parameters, only the
resonance decay biomarker of creatine in Region 2 achieves
statistical significance.

The biomarkers identified using the default processing
parameters, both wavelet and model-based, serve as a ref-
erence to evaluate alternative parameter selection scenarios
and their impact on the statistical significance of specific

biomarkers. We investigated two such scenarios using the
baseline removal and the water removal stages.
Baseline Removal Sensitivity
The heatmaps in Fig. 4 describe different strata of

P-values (upper) and effect sizes (lower) observed for all
values of (W , α) for the wavelet-based biomarkers identified
with default baseline parameter values in Regions 1, 2, and 3.
In Region 1, the wavelet-based biomarker remains statisti-
cally significant (p < 0.01) for all values of (W , α), and the
maximum effect size (asterisk) occurs at (W = 121, α = 10),
which is slightly higher than that of the default (diamond)
parameters (W = 101, α = 15). The lowest effect size
(circle) occurs, however, for (W = 181, α = 5). For
Region 2 and 3, significance levels vary dramatically for
different values of (W , α), with p-values going both below
0.01 and also exceeding 0.05. Likewise, maximum and min-
imum effect sizes at values of (W , α) different from the
default values. In Region 3, the default parameters yield the
greatest significance and the largest effect sizes, but small
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TABLE 3. Model-based biomarker statistics obtained using the default processing parameters. * indicates p ≤ 0.05, ** indicates p ≤ 0.01.

FIGURE 5. Heatmap visualizations of model-based biomarker statistics across baseline removal sensitivity trials for Region, 2, corresponding to the creatine
peak at approximately 3.02 ppm. The default parameter value trials are denoted with a diamond; the best and worst performing trials are denoted by an
asterisk and circle respectively. (a) P-Value heatmap visualizations for model-based biomarkers (resonance height, area, and decay) in Region 2. (b) Effect
size heatmap visualizations for model-based biomarkers in Region 2.

deviations in parameter values can cause precipitous changes
in both quantities. Looking across all three regions, the set
of parameter values where the biomarkers are not significant
(p > 0.05) do not coincide.

The presence of prominent, assigned peaks in Regions 1
and 2 made them candidates for an identical analysis using
estimated model-based resonance parameters. Fig. 5 presents
the heatmaps of model-based biomarker statistics in Region 2
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TABLE 4. Wavelet-based biomarker statistics for baseline removal parameter sensitivity trials. * indicates p ≤ 0.05, ** indicates p ≤ 0.01.

TABLE 5. Model-based biomarker statistics for baseline removal parameter sensitivity trials. * indicates p ≤ 0.05, ** indicates p ≤ 0.01.

derived during baseline removal trials that exhibit meaning-
ful results. Region 2 corresponds to the prominent creatine
resonance, for which only the estimated resonance decay
parameter was statistically significant using the default base-
line removal parameters, as indicated by the diamond overlay
at (W = 101, α = 0.15). Moreover, Fig. 5 demonstrates that
a range of parameter values can make resonance height and
area estimates statistically significant. The optimal parameter
values, (W = 171, α = 0.05), indicate that wider estimation
intervals with lower estimates of noise levels may be better for
assessing the amplitude and area biomarkers corresponding
to the creatine resonance in Region 2. The corresponding
NAA resonance parameters estimated by HSVD for Region 1
only demonstrate statistically significant differences for the
resonance decay biomarker, and therefore are not shown for
the sake of brevity. The parameter values that reflect the
least significance do not coincide across different biomarker
types, nor are they consistent between biomarkers from
Regions 1 and 2.

Tables 4 and 5 summarize the key heatmap parameter
values from the baseline removal trials for both wavelet-
based and model-based biomarkers, respectively, includ-
ing the default, best-case and worst-performing parameter
values (W , α) and effect sizes, and the percentage change

from default parameter values. The amount of increase and
decrease in effect size across the heatmap solution space was
dramatically larger for model-based biomarkers. For both
types of biomarkers, the effect size can be increased, but the
optimal parameters differed for each region. In Region 3,
the wavelet-based biomarker achieved the maximum effect
size at the default values, which was purely coincidental,
but the default values were not optimal for biomarkers in
Regions 1 and 2.
For a subset of extreme values for (W , α), the desired

resonances could not be consistently identified by HSVD,
and therefore no biomarkers could be obtained. Consequently,
these trials were omitted.
Water Removal Sensitivity
The heatmaps in Fig. 6 describe different strata of

P-values (upper) and effect sizes (lower) observed for all
values of (K,Q) for the wavelet-based biomarkers identi-
fied with default baseline parameter values in Regions 1, 2,
& 3. In comparison to the heatmaps for baseline removal
in Fig. 4, there is considerably less variation in P-values
and effect sizes. Similar to Fig. 4, however, the opti-
mal parameter values for water removal are different for
Regions 1, 2, & 3. Fig. 7 conveys the corresponding
heatmaps for the model-based biomarkers in Region 2
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FIGURE 6. Heatmap visualizations of wavelet-based biomarker statistics across water removal sensitivity trials for Regions 1, 2, and 3, corresponding to 2.02,
3.02, and 3.78 ppm respectively. The default parameter value trials are denoted with a diamond; the best and worst performing trials are denoted by an
asterisk and circle respectively. (a) P-Value heatmap visualizations for wavelet biomarkers in Regions 1, 2, and 3. (b) Effect size heatmap visualizations for
wavelet biomarkers in Regions 1, 2, and 3.

TABLE 6. Wavelet biomarker statistics for water removal parameter sensitivity trials. * indicates p ≤ 0.05, ** indicates p ≤ 0.01.

and, likewise, illustrates less variability than Fig. 5. Sim-
ilar to baseline removal, model-based biomarkers for
Region 1 remain statistically insignificant across water
removal parameter values. However, as illustrated in Fig. 7,
the response surface for the model-based creatine reso-
nance decay biomarker in Region 2 demonstrated a lim-
ited range of parameter values that achieve statistical
significance.

The key heatmap values from the water removal trials are
summarized in Tables 6 and 7 for both wavelet-based and
model-based biomarkers, respectively, including the default,
best-case and worst-case (K,Q) values and effect sizes, and
the percentage change from default values. Generally, the
range of effect sizes is smaller than that documented in
Tables 4 and 5 for baseline removal. For wavelet-based
biomarkers, the best case parameters values were identical
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TABLE 7. Model-based biomarker statistics for water removal parameter sensitivity trials. * indicates p ≤ 0.05, ** indicates p ≤ 0.01.

TABLE 8. Wavelet-based biomarker statistics for composite sensitivity trials. * indicates p ≤ 0.05, ** indicates p ≤ 0.01.

TABLE 9. Model-based biomarker statistics for composite sensitivity trials. * indicates p ≤ 0.05, ** indicates p ≤ 0.01.

for biomarkers in Region 1 and Region 2 (K = 5,Q = 5), but
different for Region 3 (K = 9, Q = 10), potentially indicat-
ing a dependence upon the proximity to the dominant water
resonance.

Composite Sensitivity
Tables 8 and 9 summarize the results for wavelet-based

and model-based biomarkers, respectively, when parameters

for both water removal and baseline removal stages were
optimized concurrently. As expected, the effect sizes were
greater than those reported in Tables 4–7 and the optimal
parameter values differed from those derived by optimizing
individual stages. Tables 8 and 9 also illustrate that biomark-
ers in different spectral regions achieve their largest effect
sizes using different sets of parameter values.
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FIGURE 7. Heatmap visualizations of model-based biomarker statistics across water removal sensitivity trials for Region, 2, corresponding to the
creatine peak at approximately 3.02 ppm. The default parameter value trials are denoted with a diamond; the best and worst performing trials are
denoted by an asterisk and circle respectively. (a) P-Value heatmap visualizations for model-based biomarkers (resonance height, area, and decay) in
Region 2. (b) Effect size heatmap visualizations for model-based biomarkers in Region 2.

To visually assess how different sets of parameter values
impact the waveforms from which the features are extracted,
Fig. 8 plots the mean waveforms from Region 3 for each
class using different quartets of baseline removal and water
removal parameters (W,α,K,Q) appearing in Table 8. The
waveforms derived using the best-performing parameters (81,
10, 13, 40) and default parameters (101, 15, 10, 25) show little
change in the proximity of the wavelet-based biomarker, but
the class difference disappears when the worst-case param-
eters (81, 40, 15, 40) are used. It is worth noting that the
best-case and worst-case parameter values are similar, with
the major difference being the value of α, which is the
percentage level at which the baseline value is estimated.
In Region 3, α = 40 erodes the difference in classes, but for
Regions 1& 2, best-case effect sizes were found using α = 35
and α = 30, respectively.
Classification
Table 10 reports the probability of correct classification

(PCC) rates for the comparison between healthy control sub-
jects and subjects with spinal cord injury using wavelet-based

biomarkers. PCC values are given for the biomarkers derived
using default baseline removal and water removal parameters
as well as those achieved using the optimized parameters
in Table 8. As in [1], three different classifiers were used.
Three methods of estimating the PCC are provided. Apparent
PCC represents the PCC achieved by testing classifiers on
the data used to train them and provide an upper bound on
PCC rates. Leave-One-Out (LOO) Cross-Validation PCC
illustrates the average classification performance when the
classifiers are tested on one out-of-sample datum. The
0.632+ LOO Bootstrap [44] provides a more rigorous esti-
mate of PCC by performing a bootstrap operation on each
trial of the LOO operation.
The results in Table 10 indicate equal or greater perfor-

mance for the optimized biomarkers for several of the clas-
sifiers and cross-validation techniques.

IV. DISCUSSION
The main contribution of our effort is to introduce algo-
rithmic techniques for measuring the sensitivity of MRS
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FIGURE 8. Visualization of the mean class spectra and corresponding wavelet-based biomarker intensity for Region 3 for different sets of water
removal and baseline removal parameters. These results correspond to the (a) default processing parameters, (b) best-performing processing
parameters, and (c) worst performing processing parameters. Specific parameter values and effect sizes are listed in Table 2 & Table 8.

TABLE 10. Classification rates for default MRS biomarkers and optimized wavelet-based biomarkers based on the parameters reported in Table 2 &
Table 8.

biomarkers that can accelerate the clinical translation of MRS
biomarkers. While previous efforts have investigated sensi-
tivity and reproducibility of measurements and individual
algorithms operations, our effort is the first to focus specif-
ically on the sensitivity of MRS biomarkers derived from
a parameterized pipeline. More specifically, we have mea-
sured how varying parameters at distinct processing stages
can either erode or strengthen the prospective biomarkers
found in [1], and that it is possible to identify parameters that
maximize the ability of biomarkers to discriminate between
groups.

Our approach is especially useful in clinical studies
with low N like [1] where important insights cannot be
derived through simple significance testing. By interrogat-
ing the results in [1], Figs. 4 and 6 demonstrated that
the biomarkers in [1] were more sensitive to baseline
removal than water removal and also that the biomarkers
in the three regions showed different levels of stability to
baseline removal. As shown in Fig. 4, the biomarker in
Region 1 did not vary in significance or effect size to
baseline removal, but biomarkers in Region 2 and 3 did.

Fig. 8 and Table 8 illustrate how an extended interval of
structural difference containing a prospective biomarker can
be completely eroded. Insights such as these could pro-
vide important hypotheses for future experiments about the
stability of prospective biomarkers as well as the design
of novel algorithms that maximize the strength of specific
biomarkers.
Our effort to establish novel metrics for MRS algorithms

can also enable equitable comparisons between algorithms
and unambiguously identify gaps and requirements for new
algorithms. This is especially true for emerging technologies,
such as MRS, where there is no consensus on standard-
ized methods for clinical acquisition, post-processing, and
analysis.
As discussed in [1], the mechanisms of pain and spinal

cord injury, along with the broader range of neurological
disorders, remain poorly understood. The need to identify the
underlying pathophysiology as well as targets for drug dis-
covery requires a robust understanding of results from clinical
experiments. The results documented in [1] both confirmed
existing hypotheses but also generated new ones.
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The current sensitivity analyses are especially clinically
relevant given the importance of NAA and Cr in diagnosis.
NAA is a metabolite that is produced within the axons and
transported down the axons such that the relative concen-
tration of this metabolite is proportional to the number of
functioning brain cells within the region of interest measured
by MRS [46]. In the context of SCI, changes in NAA are
clinically significant as it demonstrates that injury down-
stream of the brain can have cerebral effects whether it be
to chronic pain or deafferation [1]. The improved sensitivity
provided by this study further supports this finding and more
importantly demonstrates that post-processing methods can
be optimized to better characterize this important metabolite.
This has significant ramifications across a broad range of
diseases that affect the CNS as neurodegenerative disorders
(such as Alzheimer’s dementia), psychiatric disorders, and
traumatic brain injury have all shown changes in NAA.

Similarly, the improved sensitivity of region 2, which con-
tains the resonances of Cr as also clinically important as
Cr is not only reflective of brain energetics [47] but it is
also used for spectral normalization based on the assumption
that Cr levels are relatively stable. This assumption has been
challenged across a number of diseases, most notably in brain
injury where Cr has recently been shown to be decreased [48].

Region 3 contains the important neurotransmitter related
metabolites of glutamate and glutamine (collectively
described as Glx). Given that pain is frequently observed with
glutaminergic processes, the ability to improve the charac-
terization of this spectral region is important. Particularly as
several metabolites co-resonate within this region, increased
spectral sensitivity would improve the diagnostic specificity
of the spectral measures.

Beyond the specific improvements cited in this particu-
lar study, the overall paradigm of the optimization of post-
processing methods for improved biomarker sensitivity has
implications across many other diseases. For example, the
ability to select specific algorithm parameters that highlight
activity in associated intervals of the MRS spectrum can
be advantageous. Future studies can benefit from directly
including the selection of optimal algorithm parameters as
part of the experimental plan. Furthermore, the improvement
in sensitivity will allow for studies in diseases with more sub-
tle changes thereby extending the use of MRS into diseases
that conventional post-processing methods would not have
provided diagnostic results.

Our results are limited by the fact that the data we analyzed
does not control all variables that might contribute to a tightly
controlled and calibrated demonstration of system sensitivity.
However, appropriate measures were taken to ensure unifor-
mity in the data collection process across the entire cohort
of subjects, as described in [1]. The data set was analyzed
retrospectively and is representative of appropriately matched
cohorts collected for the discovery of biomarkers where no
a priori information about the disease state informs which
chemicals or spectral intervals are more relevant than oth-
ers. Future efforts might augment the current approach by

employing cohorts where the expected differences are well
understood and parameter trades can ascertain how well the
differences can be revealed.
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